
Abstract. Relativistic and nonrelativistic valence triple-
zeta basis sets have been optimized at the self-consis-
tent-field (SCF) level with a Gaussian nuclear charge
distribution for the 4p, 5p and 6p elements. Two d and
one f function were optimized to correlate the valence
space, and two f and one g function were optimized to
correlate the ðn� 1Þd shell. In addition, diffuse s and p
functions were optimized at the SCF level and diffuse
d and f functions were optimized at the multireference
configuration interaction level for the negative ion.
These basis sets are equivalents of the correlation-
consistent basis sets. Prescriptions are given for con-
tracting the basis sets.
Electronic supplementary material to this paper can be
obtained by using the Springer Link server located at
http://dx.doi.org/10.1007/s00214-002-0388-0
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1 Introduction

This paper is the second in a series reporting basis set
optimizations for the heavy elements. The first paper
presented double-zeta basis sets for the 4p, 5p and 6p
elements [1]. These basis sets are adequate for qualitative
and semiquantitative calculations, but for higher accu-
racy, larger basis sets are needed. The first stage in
developing larger basis sets is presented in this paper, in
which a set of triple-zeta basis sets for the same elements
is presented. As for the double-zeta basis sets, they are
generated in the style of the correlation-consistent basis
sets of Dunning and coworkers [2].

Since the first paper was published, several other
basis sets have appeared in the literature, notably a set
of better than double-zeta quality family basis sets for
most of the periodic table by Fægri [3], and a set of
approximately triple-zeta quality for the entire periodic
table optimized using the third-order. Douglas–Kroll
method by Tsuchiya et al. and Nakajima and Hirao [4].
The development of relativistic basis sets has been
reviewed in a recent article by Fægri and the author [5].
The basis sets presented in this paper include not only
the self-consistent field (SCF) sets but also polarizing
and correlating functions as well. These are vital for
describing molecular bonding and must be included
in any calculations that hope to achieve quantitative
accuracy.

2 Method

The methodology has been described previously [1, 6]. As in the
previous paper, ‘-optimization was employed, and the basis sets
were optimized on the average energy of the nonrelativistic pn

configuration, both in the SCF and the configuration interaction
(CI) optimizations; the latter are multireference singles and doubles
CI (MR-SDCI) optimizations. The procedure followed was the
same as that used for the double-zeta basis sets, and is outlined in
the following paragraph.

In all the SCF optimizations to determine the basis for the SCF
occupied orbitals, the exponents are varied only within a given
angular space, i.e. for a given ‘ value, with all other exponents
fixed. In a full optimization, the angular spaces are cycled through
the optimization process until there is no significant change in the
total energy and the gradient with respect to the logarithms of the
exponents. The exponents in each angular space are to a large
degree independent of the other angular spaces. Convergence of the
‘ > 0 angular spaces usually only takes two cycles; convergence
of the s space often takes more because of the larger number of
functions and the larger overlaps.

The size of the basis sets was determined by a series of opti-
mizations on the rare-gas atoms. The series was determined by first
fully optimizing a reference basis set, then performing optimiza-
tions within each angular space for different numbers of exponents
with the exponents in the other angular spaces fixed. The criteria of
balance between the energy gain in each angular space for the
addition of the next function and representation of the outermost
maximum of both the n and n� 1 shells were employed to decide
on the optimum basis set.
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Extensions to the SCF basis sets were determined in the style
of the correlation-consistent basis sets. One diffuse s function and
one diffuse p function were determined in SCF calculations for the
negative ion. Valence correlation functions were optimized in
MR-SDCI calculations within a 2s2p2d1f correlating space. The
s and p correlating functions were taken to be the outermost
and the third-outermost functions from the SCF set. These were a
little more diffuse than the optimal correlating s and p functions,
but were considered to be adequate for the present purpose. Only
the two d functions and the f function were optimized. Diffuse d
and f functions were optimized for the negative ion in MR-SDCI
calculations within a 3s3p3d2f correlating space consisting of
the valence 2s2p2d1f space supplemented by 1s1p1d1f diffuse
functions, with the diffuse s and p functions taken from the SCF
negative ion optimizations. Correlation functions for the ðn� 1Þd
shell were optimized in MR-SDCI calculations in which double
excitations out of the d shell into a 2f 1g correlating space were
considered. The angular momentum resulting from the coupling
of the d shell to the correlating functions was constrained to a
zero value, so that the correlating configurations represented only
d-shell correlation.

The CI optimizations were mostly performed with an adaption
of the relativistic atomic MRCI program developed by the author
[7]. In this adaption, four-spinors consisting of a single Gaussian
function with the large and small components determined by
diagonalizing the kinetic energy matrix are used as correlating
functions in an MRCI calculation. The exponents are optimized
using the same second-order algorithm as in the SCF optimization
program, with the gradient and Hessian calculated by finite
differences.

3 Results

The basis set sizes determined for the 4p elements were
23s16p9d for the relativistic set and 22s15p9d for the
nonrelativistic set; for the 5p elements the sizes were
28s21p14d for the relativistic set and 27s18p13d for the
nonrelativistic set; and for the 6p elements the sizes were
30s26p16d10f for the relativistic set and 29s22p15d10f
for the nonrelativistic set. Total energies for the SCF
basis sets of the neutral atoms and the negative ions are

compared in Tables 1, 2, and 3 with the numerical
limits.

The energies for the nonrelativistic sets are slightly
closer to the numerical limit than those for the relativ-
istic sets, with the exception of the 6p block. Here, the
basis set energy actually goes below the numerical limit.
This is not a collapse, because the exponent optimization
is variational and the energy is bounded from below; the
Hessian in the exponent space is positive-definite at
convergence. Rather, this phenomenon has been termed
a ‘‘prolapse’’[3] for the following reason. Any finite basis
set represents a projection onto the exact spectrum,
and the minimum energy in the projected basis set can
fall below the exact energy. If kinetic balance is used
between the large and small components, the energy
prolapse is of the order of c�4. The energy minimization
procedure ensures that, if the variational space is large
enough, the energy will fall below the exact energy. This
presents a problem for defining a sequence of basis sets
whose energy converges on the exact energy. However,
the deficiency is in the core and will probably not affect
chemical applications. Where it is critical is for proper-
ties that are sensitive to the core description [8], and in
that case it would be preferable to replace the core part
of the basis set with an even-tempered sequence of
exponents. It should also be noted that obtaining the
exact energy is a necessary but not sufficient condition
for basis set convergence. It is always possible in a four-
component relativistic calculation to obtain the exact
energy with a wave function that is not exact.

The valence correlating functions are presented in
Table 4. For all elements, the largest d exponent is a little
larger than the smallest d exponent from the SCF set.
To reduce linear dependence, the smallest SCF d expo-
nent should be deleted from the basis set and the two
correlating d exponents added. The contraction coeffi-
cients, which are given in the internet archive (Sect. 5),
are derived from SCF calculations where this replace-

Table 1. Total energies in Eh of
basis set and numerical self-
consistent-field (SCF) calcula-
tions and differences between
the two for the 4p neutral atoms
and negative ions

Element Relativistic Nonrelativistic

Neutral atom Negative ion Neutral atom Negative ion

Ga Basis �1942:563114 �1942:550463 �1923:252953 �1923:241329
Numeric �1942:563764 �1942:551218 �1923:253477 �1923:241946
Difference 0:000650 0:000755 0:000524 0:000617

Ge Basis �2097:469695 �2097:475549 �2075:330939 �2075:338208
Numeric �2097:470361 �2097:476228 �2075:331456 �2075:338739
Difference 0:000666 0:000679 0:000517 0:000531

As Basis �2259:441212 �2259:471704 �2234:161453 �2234:193590
Numeric �2259:441912 �2259:472395 �2234:161979 �2234:194109
Difference 0:000700 0:000691 0:000526 0:000519

Se Basis �2428:587526 �2428:647240 �2399:830748 �2399:892279
Numeric �2428:588274 �2428:647965 �2399:831290 �2399:892803
Difference 0:000748 0:000725 0:000542 0:000524

Br Basis �2605:022678 �2605:115692 �2572:427456 �2572:522419
Numeric �2605:023485 �2605:116465 �2572:428018 �2572:522958
Difference 0:000807 0:000773 0:000562 0:000539

Kr Basis �2788:859751 �2752:038935
Numeric �2788:860624 �2752:039516
Difference 0:000873 0:000581
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ment has been made. There is in fact very little difference
between the nonrelativistic and the relativistic exponents
for the 4p and 5p elements, and it would incur little loss
in energy to use the same set in both relativistic and
nonrelativistic calculations. For the 6p elements, the
relativistic exponents are about 10% larger than the
nonrelativistic exponents, and the use of the same ex-
ponents in both relativistic and nonrelativistic calcula-
tions would incur some energy loss. A comparison of
nonrelativistic calculations for the rare gases in which
the relativistic correlating functions were used in place of
the nonrelativistic correlating functions gave energy
differences of 15lEh for Kr, 70lEh for Xe, and 570lEh

for Rn.

The diffuse functions are presented in Table 5. As for
the valence correlating functions, the diffuse functions
do not differ much between the relativistic and nonrel-
ativistic sets. The relativistic diffuse functions are a little
tighter than the nonrelativistic diffuse functions, with the
exception of the p functions.

The core correlating functions are presented in Table
6. Again, there is not a big difference between the
nonrelativistic and relativistic sets. The exponents from
the relativistic sets were used to start the nonrelativistic
optimizations. The energy lowering on optimization was
only 3–5lEh for the 4p elements, increasing to 20–30lEh

for the 5p elements and 70–120lEh for the 6p elements.
Clearly, using either set provides results within chemical

Table 2. Total energies in Eh of
basis set and numerical SCF
calculations and differences be-
tween the two for the 5p neutral
atoms and negative ions

Element Relativistic Nonrelativistic

Neutral atom Negative ion Neutral atom Negative ion

In Basis �5880:431288 �5880:423895 �5740:104232 �5740:099382
Numeric �5880:431582 �5880:424262 �5740:104531 �5740:099733
Difference 0:000294 0:000367 0:000299 0:000351

Sn Basis �6176:127783 �6176:139559 �6022:841989 �6022:856714
Numeric �6176:128089 �6176:139876 �6022:842279 �6022:857017
Difference 0:000306 0:000317 0:000290 0:000303

Sb Basis �6480:518305 �6480:553679 �6313:347671 �6313:386081
Numeric �6480:518627 �6480:553998 �6313:347960 �6313:386374
Difference 0:000322 0:000319 0:000289 0:000293

Te Basis �6793:698626 �6793:760902 �6611:674108 �6611:739389
Numeric �6793:698968 �6793:761230 �6611:674398 �6611:739676
Difference 0:000342 0:000328 0:000290 0:000287

I Basis �7115:793810 �7115:885919 �6917:886554 �6917:981552
Numeric �7115:794175 �7115:886265 �6917:886849 �6917:981838
Difference 0:000365 0:000346 0:000295 0:000286

Xe Basis �7446:895049 �7232:034317
Numeric �7446:895440 �7232:034620
Difference 0:000391 0:000303

Table 3. Total energies in Eh of
basis set and numerical SCF
calculations and differences be-
tween the two for the 6p neutral
atoms and negative ions

Element Relativistic Nonrelativistic

Neutral atom Negative ion Neutral atom Negative ion

Tl Basis �20274:850300 �20274:842157 �18961:135250 �18961:132268
Numeric �20274:850644 �20274:842721 �18961:135824 �18961:132912
Difference 0:000344 0:000564 0:000574 0:000644

Pb Basis �20913:714075 �20913:725487 �19523:260538 �19523:277207
Numeric �20913:714332 �20913:725813 �19523:261070 �19523:277785
Difference 0:000257 0:000326 0:000532 0:000578

Bi Basis �21565:705902 �21565:741424 �20094:760892 �20094:800645
Numeric �21565:706080 �21565:741649 �20094:761394 �20094:801188
Difference 0:000178 0:000225 0:000502 0:000543

Po Basis �22231:013078 �22231:075755 �20675:673488 �20675:738932
Numeric �22231:013179 �22231:075893 �20675:673968 �20675:739446
Difference 0:000101 0:000138 0:000480 0:000514

At Basis �22909:807597 �22909:900037 �21266:032755 �21266:126180
Numeric �22909:807616 �22909:900086 �21266:033217 �21266:126674
Difference 0:000019 0:000049 0:000462 0:000494

Rn Basis �23602:104336 �21865:852593
Numeric �23602:104246 �21865:853041
Difference �0:000090 0:000448
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accuracy, but it is probably preferable to use the opti-
mized sets for energy extrapolations. For the 6p elements,
the relativistic exponents are smaller than the nonrela-
tivistic exponents, reflecting the relativistic expansion of
the 5d shell. The two f exponents in the 6p set are similar
to the outermost two SCF exponents, but are somewhat
smaller. However, replacing the SCF exponents with the
core-correlating f exponents results in a change of several
millihartrees in the SCF energy, and using the SCF
exponents for core correlation reduces the correlation
energy by several millihartrees. No doubt, a larger SCF
basis set would have exponents that are much closer to
the correlating exponents, but it is not worth increasing
the size of the basis set for this purpose. The contraction
coefficients given in the internet archive were therefore
generated with the SCF set, and for core correlation the
two f exponents should be added to the basis set.

4 Discussion

There is more of a difference in size between the
nonrelativistic and relativistic triple-zeta basis sets than
there was for the double-zeta basis sets. For the double-
zeta basis sets the influence of the nuclear potential is
greater than that of the relativistic corrections; for the
triple-zeta basis sets the number of functions is larger,
and each function contributes to proportionately less
of the energy, and therefore the relativistic effects
are relatively more important. Thus, even for the 4p
elements, an extra s and p function are needed in the
relativistic set to obtain the same energy balance as in
the nonrelativistic set. For the 5p elements, one more s,
three more p and one more d functions are required, and
for the 6p elements, one more s, four more p and one
more d functions are required. As for the double-zeta

Table 4. Correlating 2d1f functions

Element Relativistic Nonrelativistic

d d f d d f

Ga 3.14031·10)1 1.08909·10)1 3.17685·10)1 3.05932·10)1 1.06503·10)1 3.08762·10)1

Ge 3.90445·10)1 1.38368·10)1 3.14113·10)1 3.84020·10)1 1.36943·10)1 3.10554·10)1

As 4.78844·10)1 1.73974·10)1 3.79380·10)1 4.71947·10)1 1.72349·10)1 3.73958·10)1

Se 5.74577·10)1 2.12553·10)1 4.62750·10)1 5.66673·10)1 2.10665·10)1 4.56290·10)1

Br 6.77301·10)1 2.53829·10)1 5.61019·10)1 6.67069·10)1 2.51102·10)1 5.52375·10)1

Kr 7.84544·10)1 2.96355·10)1 6.74331·10)1 7.72461·10)1 2.93049·10)1 6.64487·10)1

In 2.39763·10)1 8.86616·10)2 2.66497·10)1 2.26892·10)1 8.52026·10)2 2.48251·10)1

Sn 2.88425·10)1 1.09939·10)1 2.48627·10)1 2.75946·10)1 1.06825·10)1 2.39429·10)1

Sb 3.43297·10)1 1.34930·10)1 2.89885·10)1 3.30389·10)1 1.31774·10)1 2.79835·10)1

Te 4.02284·10)1 1.61787·10)1 3.43785·10)1 3.88493·10)1 1.58545·10)1 3.32639·10)1

I 4.64500·10)1 1.89940·10)1 4.05977·10)1 4.49337·10)1 1.86445·10)1 3.92942·10)1

Xe 5.29597·10)1 2.19067·10)1 4.76724·10)1 5.12785·10)1 2.15222·10)1 4.60914·10)1

Tl 2.46388·10)1 8.99285·10)2 2.97512·10)1 2.04269·10)1 7.87807·10)2 2.32181·10)1

Pb 2.81842·10)1 1.06119·10)1 2.53085·10)1 2.43538·10)1 9.71884·10)2 2.17762·10)1

Bi 3.25040·10)1 1.26580·10)1 2.78626·10)1 2.86745·10)1 1.18292·10)1 2.49257·10)1

Po 3.72051·10)1 1.48635·10)1 3.21913·10)1 3.32558·10)1 1.40751·10)1 2.91441·10)1

At 4.21484·10)1 1.71536·10)1 3.72951·10)1 3.79967·10)1 1.63837·10)1 3.39023·10)1

Rn 4.73002·10)1 1.95078·10)1 4.31009·10)1 4.28739·10)1 1.87278·10)1 3.91677·10)1

Table 5. Diffuse s, p, d and f functions

Element Relativistic Nonrelativistic

s p p f s p d f

Ga 1.73302·10)2 1.05738·10)2 3.35918·10)2 9.48329·10)2 1.72716·10)2 1.07202·10)2 3.31658·10)2 9.35381·10)2

Ge 2.47836·10)2 1.68397·10)2 4.68836·10)2 1.06878·10)1 2.40249·10)2 1.65274·10)2 4.67366·10)2 1.06179·10)1

As 3.12842·10)2 2.24395·10)2 6.25592·10)2 1.40405·10)1 3.08698·10)2 2.24454·10)2 6.23490·10)2 1.38879·10)1

Se 3.77240·10)2 2.78480·10)2 7.99181·10)2 1.88065·10)1 3.74689·10)2 2.77150·10)2 7.97215·10)2 1.86089·10)1

Br 4.40655·10)2 3.31367·10)2 9.92830·10)2 2.60473·10)1 4.35581·10)2 3.28066·10)2 9.59296·10)2 2.55800·10)1

In 1.55272·10)2 9.70088·10)3 2.84752·10)2 8.21985·10)2 1.51120·10)2 1.02359·10)2 2.81975·10)2 7.87864·10)2

Sn 2.10766·10)2 1.46872·10)2 3.84853·10)2 8.74859·10)2 2.04771·10)2 1.50777·10)2 3.81169·10)2 8.51261·10)2

Sb 2.56761·10)2 1.90556·10)2 5.00018·10)2 1.10724·10)1 2.47193·10)2 1.93862·10)2 4.96336·10)2 1.07508·10)1

Te 3.01076·10)2 2.31941·10)2 6.27474·10)2 1.44410·10)1 2.94490·10)2 2.34960·10)2 6.25925·10)2 1.40409·10)1

I 3.50022·10)2 2.72372·10)2 7.69634·10)2 1.97174·10)1 3.38080·10)2 2.74714·10)2 7.71852·10)2 1.91938·10)1

Tl 1.50549·10)2 7.76648·10)3 2.64348·10)2 8.85254·10)2 1.45238·10)2 9.56264·10)3 2.64880·10)2 7.43116·10)2

Pb 2.02344·10)2 1.23676·10)2 3.22036·10)2 8.77664·10)2 1.90274·10)2 1.40033·10)2 3.51349·10)2 7.83356·10)2

Bi 2.45162·10)2 1.62027·10)2 4.32979·10)2 1.06024·10)1 2.31237·10)2 1.77583·10)2 4.51125·10)2 9.67770·10)2

Po 2.81144·10)2 1.97645·10)2 5.59814·10)2 1.35539·10)1 2.70352·10)2 2.13152·10)2 5.62727·10)2 1.24249·10)1

At 3.17280·10)2 2.31267·10)2 6.74341·10)2 1.82392·10)1 3.05429·10)2 2.46149·10)2 6.87129·10)2 1.67866·10)1
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basis sets, the largest demands of relativity are on the p
set because of the small component of the p1=2. The
finite nuclear size places a limit on the maximum
exponent needed in the s set and therefore it does not
grow as rapidly as the p set. This is seen in the fact that
only two more s exponents are required in the 6p basis
sets than in the 5p basis sets, whereas the 5p basis sets
have five more s exponents than the 4p basis sets.

The basis sets developed here are designed to follow
the pattern of the correlation-consistent basis sets
of Dunning and coworkers [2], providing basis sets with
the flexibility to correlate the valence space. The
recommended procedure for correlating the valence is
to uncontract the first and third most diffuse s and p
functions. The correlation energy obtained with opti-
mized s and p functions is somewhat larger (about 1
millihartree for Xe, for example) but the SCF functions
are deemed adequate.

Core correlation is also a consideration, especially in
the early members of the p block. The optimized s and p
functions are close to the innermost and outermost s and
p SCF functions for the outer core (n)1)s and (n)1)p
shells, just as in the valence space, and are a little tighter.
The optimized d functions are close to the second- and
third-outermost SCF functions, with the inner correlat-
ing function a little tighter. The recommended procedure
is to uncontract the fourth- and sixth-outermost SCF s
and p functions, and a further two d functions (the third-
and fourth-outermost functions when the outermost d
function is replaced by the two valence correlation d
functions).

In the double-zeta basis sets [1], an f function was
optimized for the static dipole polarization of the (n)1)d
shell. The triple zeta basis sets already have f functions
for both core and valence correlation. Comparison of
the polarizing function with the core- and the valence-
correlating f functions shows that it lies between the two
sets. The gap between the valence correlating f function
and the outermost core-correlating f function is large – a
factor of about 6–7. For optimal polarization of the d

shell it may then be necessary to add a function in this
gap, either employing the function optimized for the
double-zeta set, or taking the geometric mean of the
functions on either side of the gap.

The basis sets presented in this and the first paper are
intended to form a series for which energy extrapola-
tions [9–11] can be performed to obtain high accuracy.
Admittedly, extrapolations from a double-zeta and a
triple-zeta set are not very reliable but might give a
useful improvement in accuracy over the triple-zeta re-
sults themselves. The author’s intention is to develop a
quadruple-zeta set that could be used for more accurate
extrapolations.

The full tables of basis sets including nonrelativistic
SCF, spin-free relativistic SCF [12] and Dirac–Fock
SCF coefficients are available in ASCII format from
the internet archive. The spin-free relativistic SCF
coefficients include the Foldy–Wouthuysen transformed
large-component coefficients that can be used in the
scalar one-electron approximation recently presented by
the author [13].

5 Internet archive

This work contains an internet archive in ASCII format.
The archive contains the nonrelativistic exponent sets
with the coefficients of the Hartree–Fock orbitals and
the relativistic exponent sets with the large- and small-
component coefficients of the Dirac–Fock spinors and
the large Foldy–Wouthuysen transformed large- and
small-component coefficients of the spin-free Dirac–
Fock spinors, as well as the exponents of the diffuse and
the correlating functions. The archive is accessible at no
charge at http://dx.doi.org/10.1007/s-00214-002-0388-0.
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Table 6. Core correlating 2f1g
functions Element Relativistic Nonrelativistic

f f g f f g
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As 9.94484 2.90803 6.27408 9.99604 2.93116 6.31633
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Br 1.25650 3.79044 7.97131 1.26149·101 3.81662 8.01698
Kr 1.39583 4.26276 8.87951 1.40060·101 4.29031 8.92641

In 3.02134 1.00488 2.04007 3.06948 1.02614 2.07139
Sn 3.39106 1.15637 2.29281 3.44245 1.17940 2.32522
Sb 3.77151 1.31218 2.55221 3.82668 1.33718 2.58569
Te 4.16446 1.47294 2.81869 4.22393 1.50010 2.85320
I 4.57121 1.63914 3.09261 4.63551 1.66863 3.12812
Xe 4.99357 1.81160 3.37429 5.06245 1.84314 3.41072

Tl 1.97350 7.08022·10)1 1.51887 2.03493 7.45581·10)1 1.56597
Pb 2.16866 8.02167·10)1 1.67461 2.22817 8.40668·10)1 1.72167
Bi 2.36158 8.95517·10)1 1.83062 2.41987 9.35295·10)1 1.87792
Po 2.55388 9.88739·10)1 1.98757 2.61148 1.03007 2.03528
At 2.74673 1.08233 2.14591 2.80398 1.12541 2.19423
Rn 2.94091 1.17661 2.30605 2.99806 1.22161 2.35511
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challenges of the Office of Computational and Technology Re-
search, and performed under contract DE-AC06-76RLO 1830 with
Battelle Memorial Institute. The calculations were performed on
the IBM RS6000 workstations of the Computational Chemistry
Branch at NASA Ames Research Center, on the Sun and IBM
RS6000 workstations of the Theory, Modeling and Simulations
group of the Environmental and Molecular Sciences Laboratory of
PNNL, and on the IBM SP computer at the Environmental and
Molecular Sciences Laboratory of PNNL.
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